
UMAC Security Bound from PRP-Advantage

J. Black S. Halevi H. Krawczyk T. Krovetz P. Rogaway

November 14, 2005

Introduction. UMAC [6] is a Carter-Wegman MAC [4, 8] based on the UHASH family of hash functions. A
Carter-Wegman MAC uses a family of hash-functions H and a family of masking functions F to authenticate
a message M using a nonce N and private key (K ′,K) by associating to M a tag HK′(M)⊕FK(N). The
original proof for UMAC [3, 5] established that UHASH is an ε-SU family of hash functions (strongly-
universal [4], to be reviewed shortly) for a suitably small value of ε.1 This indicates, as with any Carter-
Wegman MAC, that an adversary’s probability to forge against UMAC does not exceed by more than ε
the ability of an adversary, with comparable resources, to break the underlying family of masking functions
in the sense of distinguishing it from the family of all functions with the appropriate domain and range, a
security notion known as PRF-advantage.

Beginning with Shoup [7] there has been an interest in improving the analysis of the Carter-Wegman
construction when the family of masking functions is a block cipher, or is based on one, with its security
measured in the sense of distinguishing it from the family of all permutations (not functions) with the
appropriate domain and range, a security notion known as PRP-advantage. PRP-advantage is a tighter
measure of block-cipher security—it more accurately models these objects—thereby making a preferable
starting point for reductions.

The purpose of this note is to enumerate the main security results about UMAC [3, 5] as extended by
applying the latest results that relate the security of a Carter-Wegman MAC to the PRP-security of a block
cipher that it uses [2]. Nothing in this note is difficult, but it seems worthwhile to document how to glue
together the known results, and this has been requested on the CFRG mailing list.

Definitions. See [6] for all algorithm specifications. Let K and K′ be finite nonempty sets, let n ≥ 128
(one expects n = 128), and let F : K × {0, 1}n → {0, 1}n and F ′: K′ × {0, 1}n → {0, 1}n be functions. For
i ∈ {1, 2, 3, 4} let UMAC-32i[F ] be UMAC-32i based on F ; let UMAC∗-32i[F ′, F ] be identical except that
the key L1Key ‖ L2Key ‖ L3Key1 ‖ L3Key2 for UHASH and the key K for F is determined using F ′ and
not F ; and let UHASH-32i[F ] be UHASH-32i using a key determined by F .

We say that H: K ×M → {0, 1}τ is ε-SU if for all distinct M,M ′ ∈ M and all Y, Y ′ ∈ {0, 1}τ we
have that PrK [HK(M) = Y ] = 2−τ and PrK [HK(M) = Y | HK(M ′) = Y ′] ≤ ε. Let Func(a, b) denote all
functions from a-bits to b-bits and let Perm(n) denote all permutations on n bits. Let x

$← S denote assigning
to x a value chosen uniformly from the finite set S. Let A be an algorithm with an oracle and let Pr[AO⇒1]
be the probability that it outputs 1. Define Advprp

F (A) = Pr[K $← K : AFK⇒1]−Pr[π $← Perm(n) : Aπ⇒1]
and Advprf

F (A) = Pr[K $← K : AFK⇒ 1] − Pr[ρ $← Func(n, n) : Aρ⇒ 1]. For MAC: K × N ×M → {0, 1}τ

let Advmac
MAC(A) = Pr[K $← K : AMACK(·,·) forges ] where A is said to forge if it asks a sequence of queries

(M1, N1), . . . , (Mq, Nq) with distinct Ni-values and then outputs an (M,N, T ) where T = MACK(M,N)
and A never asked a query (M,N). Adversaries are assumed to never repeat a query. For each advantage
measure xxx let Advxxx

Π (t, q) = maxA{Advxxx
Π (A)} where A’s running time plus encoding size is at most t

(in some fixed model of computation) and A asks at most q oracle queries. We say that (t′, q′) is comparable
to (t, q) if t′ ≤ ct lg t and q′ ≤ q + c′ for constants c and c′ determined from the reduction in question, details
of the model of computation, and the parameter n. (We adopt this shorthand because stating more precise
resource-bound comparisons gives rise to more obscure-looking statements.)

Results. Fix n ≥ 128 and i ∈ {1, 2, 3, 4}. Below we let A be an adversary, t, q, τ ≥ 1 numbers, and K,M
nonempty sets, the former finite. After the following sequence of results we briefly describe each step.

1 The value ε actually depends on the length of the tag generated, with 32, 64, 96, and 128 bits permitted by [6].



Lemma 1 UHASH-32i[Func(n, n)] is ε-SU where ε = (.562502i · 2−30 i).

Lemma 2 Let H: K×M→ {0, 1}τ be ε-SU, let f ∈ Func(n, τ), and let MACK,f (M,N) = HK(M)⊕f(N)
be the Carter-Wegman MAC based on H and Func(n, τ). Then Advmac

MAC(A) ≤ ε.

Lemma 3 Let Π=UMAC∗-32i[Func(n, n),Func(n, n)]. Then Advmac
Π (A) ≤ (.562502i · 2−30 i).

Theorem 1 Let E: K × {0, 1}n → {0, 1}n and let Π = UMAC-32i[E]. Then Advmac
Π (t, q) ≤ 2−30 i +

2Advprf
E (t′, q′) where (t′, q′) is comparable to (t, q). Also Advmac

Π (t, q) ≤ 2−30 i + 2Advprp
E (t′, q′) + (q′)2/2n.

Lemma 4 Pr[π $← Perm(n) : Aπ ⇒ 1] ≤ c · Pr[ρ $← Func(n, n) : Aρ⇒ 1] where c = 1.7 if A asks q ≤ 264

queries and n≥128, and where c = 1.01 if A asks q≤210 queries and n≥128.

Lemma 5 Let Π = UMAC∗-32i[Func(n, n),Perm(n)], q < 264. Then Advmac
Π (t, q) ≤ 1.7 (.562502i · 2−30 i).

Lemma 6 Let E: K × {0, 1}n → {0, 1}n and Π = UMAC∗-32i[Func(n, n), E]. Assume q < 264. Then
Advmac

Π (t, q) ≤ 1.7 (.562502i · 2−30 i) + Advprp
E (t′, q′) where (t′, q′) is comparable to (t, q).

Lemma 7 Let E: K × {0, 1}n → {0, 1}n and Π = UMAC∗-32i[Perm(n), E]. Assume q < 264. Then
Advmac

Π (t, q) ≤ 1.72 (.562502i · 2−30 i) + 1.01 Advprp
E (t′, q′) where (t′, q′) is comparable to (t, q).

Lemma 8 Let E: K × {0, 1}n → {0, 1}n and Π = UMAC-32i[E]. Assume q < 264. Then Advmac
Π (t, q) ≤

1.72 (.562502i ·2−30 i)+1.01 Advprp
E (t′, q′)+Advprp

E (t′′, q′′) where (t′, q′) and (t′′, q′′) are comparable to (t, q).

Theorem 2 Let E: K×{0, 1}n → {0, 1}n and let Π = UMAC-32i[E]. Assume q < 264. Then Advmac
Π (t, q) ≤

2−30 i + 3 Advprp
E (t′, q′) where (t′, q′) is comparable to (t, q).

Explanation. Lemma 1 is the central result, taken from [5]. The actual bound is ε = (2−31 +2−34 +2−49)i;
it is stated here in a more convenient form. The different addends arise from the different layers of hashing.
This bound is achieved by substituting NH[32] instead of NHS[16] into the proof of [5, Theorem 6.4.5].
Lemma 2 is the standard result giving the security of the Carter-Wegman MAC [4, 8]. Lemma 3 is the
immediate combining of Lemmas 1 and 2. Theorem 1 is obtained from Lemma 3 by a standard argument:
replace the second Func(n, n) in the statement of Lemma 3 by E: K × {0, 1}n → {0, 1}n, contributing a
term of Advprf

E (t′, q + 1); then replace the first Func(n, n) by E, contributing a term of Advprf
E (t′′, 92); and

then weaken the statement by dropping the .562502i. The statement following the “also” is obtained by
applying the PRP/PRF switching lemma (where, to be concrete, q′ = max{q + 1, 92}).

If one assumes Advprf
E (t′, q′) to be sufficiently small then the first bound in Theorem 1 suffices and further

refinement is not needed. If one instead wants to base the analysis solely on the quality of E as a PRP then
one needs the second bound in Theorem 1. In that case a better bound can be obtained using recent results
from [2], which effectively allow one to disregard the (q′)2/2n term as long as the number of queries is not too
large. Lemma 4 is adapted from [2], where the more general statement is given that for an adversary A that
makes q queries, Pr[Aπ⇒1] ≤ c · Pr[Aρ⇒1] where c = (1− q/2n)−q/2. Use 1 + x ≈ ex (for x ≈ 0) to get a
feel for this, while somewhat more playing with inequalities and plugging in the numbers is needed to derive
Lemma 4 from [2, Theorem 2.3]. Lemma 5 is obtained by combining Lemmas 3 and 4. An adversary A
attacking the MAC can, with one additional query, be regarded as an adversary that outputs 1 any time
the former MAC-attack is successful. Apply Lemma 4 to this adversary and re-interpret the result in terms
of attacking the MAC. Lemma 6 is obtained from Lemma 5 in the usual manner of information-theoretic
to complexity-theoretic conversion. Given a MAC-attacking adversary A one constructs a distinguisher B
that distinguishes EK (for a random key K) from π (a random permutation from Perm(n)) in the natural
way. Lemma 7 is obtained by combining Lemmas 4 and 6, much as before except that now the maximum
number of queries is 92 < 210, which is how many queries it takes to produce the UHASH internal key and
the key for the function family E. Lemma 8 is obtained from Lemma 7 in the standard way that one passes
from information-theoretic to complexity theoretic results in provable-security cryptography. Theorem 2 is
the final result, a simple rewriting of Lemma 8 to improve readability and simplify the constants.

This note analyzes the case of a single forgery attempt by an attacker. It is a straightforward exercise to
show that over qv forgery attempts the probability that an attacker gets at least one right is no more than
qv 2−30 i + 3 Advprp

E (t′, q′).

2



References

[1] M. Bellare, O. Goldreich, A. Mityagin. The power of verification queries in message authentication and
authenticated encryption. Cryptology ePrint Archive, Report 2004/309, 2004.

[2] D. Bernstein. Stronger security bounds for permutations. Unpublished manuscript, 2005, available from
the author’s web page.

[3] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and provably secure
message authentication. CRYPTO ’99, pp. 216–233, Springer, 1999.

[4] L. Carter and M. Wegman. Universal classes of hash functions. J. of Computer and System Sciences,
vol. 18, pp. 143–154, 1979.

[5] T. Krovetz. Software-optimized universal hashing and message authentication. MI Dissertation Services,
2000.

[6] T. Krovetz, editor, with J. Black, S. Halevi, H. Krawczy, and P. Rogaway. UMAC: Message authenti-
cation using universal hashing. Internet Draft draft-krovetz-umac-07.txt, November 2005.

[7] V. Shoup. On fast and provably secure message authentication based on universal hashing.
CRYPTO ’96, pp. 313–328, 1996.

[8] M. Wegman and L. Carter. New hash functions and their use in authentication and set equality. J. of
Computer and System Sciences, vol. 22, pp. 265–279, 1981.

3


